2,492 research outputs found

    Method and apparatus for frequency spectrum analysis

    Get PDF
    A method for frequency spectrum analysis of an unknown signal in real-time is discussed. The method is based upon integration of 1-bit samples of signal voltage amplitude corresponding to sine or cosine phases of a controlled center frequency clock which is changed after each integration interval to sweep the frequency range of interest in steps. Integration of samples during each interval is carried out over a number of cycles of the center frequency clock spanning a number of cycles of an input signal to be analyzed. The invention may be used to detect the frequency of at least two signals simultaneously. By using a reference signal of known frequency and voltage amplitude (added to the two signals for parallel processing in the same way, but in a different channel with a sampling at the known frequency and phases of the reference signal), the absolute voltage amplitude of the other two signals may be determined by squaring the sine and cosine integrals of each channel and summing the squares to obtain relative power measurements in all three channels and, from the known voltage amplitude of the reference signal, obtaining an absolute voltage measurement for the other two signals by multiplying the known voltage of the reference signal with the ratio of the relative power of each of the other two signals to the relative power of the reference signal

    Full-charge indicator for battery chargers

    Get PDF
    A full-charge indicator for battery chargers, includes a transistor which is in a conductive state as long as charging current to the battery is not less than a level which indicates that the battery did not reach full charge. When the battery reaches full charge, a voltage drop in a resistor in the charging current path is not sufficient to maintain the transistor in a conducting state, and therefore it is switched off. When this occurs an LED is turned on, to indicate a full charge state of the battery. A photocoupler together with a photocoupler transistor are included. When the transistor is off, the photocoupler activates the photocoupler transistor to shunt out a resistor, thereby reducing the charging current to the battery to a float charging current and prevent the battery from being overcharged and damaged

    Method and apparatus for I-V data acquisition from solar cells

    Get PDF
    A method and apparatus for logging current-voltage (I-V) characteristic d of a solar cell module (10) in two modes using a portable instrument. One mode controls the load current through a circuit (36) in 256 equal intervals while voltage is measured from open circuit to at least halfway into the knee of the curve and the other mode controls the load voltage through a circuit (34) in 256 equal intervals from the lowest voltage measurement possible (short circuit) to at least halfway into the knee of the curve, under control of a microcomputer (12). All measurements are packed by discarding each measurement that is within 0.5% of the value predicted from two previous measurements, except every ninth (9th) measurement which is retained. The remaining data is further packed into a memory block of a detachable storage medium (14) by recording the data points in sequence following a header containing data common to all points, with each point having the value of the controlled parameter recorded as the number of increments from the previous point recorded followed by the measured value. The detachable storage medium is preferably a solid state device for reliability, and is transferable to a playback terminal which unpacks the data for analysis and display

    Some buffet response characteristics of a twin-vertical-tail configuration

    Get PDF
    A rigid, 1/6 size, full span model of an F-18 airplane was fitted with flexible vertical tails of two different levels of stiffness that were buffet tested in the Langley Transonic Dynamics Tunnel. Vertical tail buffet response results that were obtained over the range of angles of attack from -10 to 40 degs, and over the range of Mach numbers from 0.30 to 0.95 are presented. These results indicate the following: (1) the response occurs in the first bending mode; (2) the response increases with increasing dynamic pressure, but changes in response are not linearly proportional to the changes in dynamic pressure; (3) the response is larger at M = 0.30 than it is at the higher Mach numbers; (4) the maximum intensity of the buffeting is described as heavy to severe using an assessment criteria proposed by another investigator; and (5) the data at different dynamic pressures and for the different tails correlate reasonably well using the buffet excitation parameter derived from the dynamic analysis of buffeting

    Mapping the optical absorption of a substrate-transferred crystalline AlGaAs coating at 1.5 µm

    Get PDF
    The sensitivity of 2nd and 3rd generations of interferometric gravitational wave detectors will be limited by thermal noise of the test-mass mirrors and highly reflective coatings. Recently developed crystalline coatings show a promising thermal noise reduction compared to presently used amorphous coatings. However, stringent requirements apply to the optical properties of the coatings as well. We have mapped the optical absorption of a crystalline AlGaAs coating which is optimized for high reflectivity for a wavelength of 1064nm. The absorption was measured at 1550nm where the coating stack transmits approximately 70% of the laser light. The measured absorption was lower than (30.2 +/- 11.1)ppm which is equivalent to (3.6 +/- 1.3)ppm for a coating stack that is highly reflective at 1530nm. While this is a very promising low absorption result for alternative low--loss coating materials, further work will be necessary to reach the requirements of <1ppm for future gravitational wave detectors. Jessica Steinlechner, Iain W Martin, Angus Bell, Garrett Cole, Jim Hough, Steven Penn, Sheila Rowan, Sebastian Steinlechne

    Do unto others or treat yourself? The effects of prosocial and self-focused behavior on psychological flourishing.

    Full text link
    When it comes to the pursuit of happiness, popular culture encourages a focus on oneself. By contrast, substantial evidence suggests that what consistently makes people happy is focusing prosocially on others. In the current study, we contrasted the mood- and well-being-boosting effects of prosocial behavior (i.e., doing acts of kindness for others or for the world) and self-oriented behavior (i.e., doing acts of kindness for oneself) in a 6-week longitudinal experiment. Across a diverse sample of participants (N = 473), we found that the 2 types of prosocial behavior led to greater increases in psychological flourishing than did self-focused and neutral behavior. In addition, we provide evidence for mechanisms explaining the relative improvements in flourishing among those prompted to do acts of kindness-namely, increases in positive emotions and decreases in negative emotions. Those assigned to engage in self-focused behavior did not report improved psychological flourishing, positive emotions, or negative emotions relative to controls. The results of this study contribute to a growing literature supporting the benefits of prosocial behavior and challenge the popular perception that focusing on oneself is an optimal strategy to boost one's mood. People striving for happiness may be tempted to treat themselves. Our results, however, suggest that they may be more successful if they opt to treat someone else instead. (PsycINFO Database Recor

    An oligosaccharide of the O-linked type distinguishes the free from the combined form of hCG [alpha] subunit

    Full text link
    JAR malignant trophoblast cells produce a free [alpha] subunit in addition to an [alpha] combined with [beta] subunit as hCG. The free [alpha] is larger by gel chromatography and SDS-PAGE than combined [alpha] and is unable to associate with [beta] subunit to form hCG. A tryptic fragment, representing amino acid residues 36-42, derived from free [alpha] was larger than the corresponding fragment from combined [alpha]. After neuraminidase treatment, the fragment from free [alpha] bound peanut lectin agarose, which is specific for Gal[beta]1-3GalNAc as found in O-linked oligosaccharides. The fragment also contained Gal and GalNAc (and a lesser amount of GlcNAc) as determined by glycosidase sensitivity and amino sugar analyses. Removal of this tryptic fragment ablated the size difference between free and combined [alpha] subunits.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24721/1/0000143.pd

    Non-Invasive Raman Tomographic Imaging of Canine Bone Tissue

    Get PDF
    Raman spectroscopic diffuse tomographic imaging has been demonstrated for the first time. It provides a noninvasive, label-free modality to image the chemical composition of human and animal tissue and other turbid media. This technique has been applied to image the composition of bone tissue within an intact section of a canine limb. Spatially distributed 785-nm laser excitation was employed to prevent thermal damage to the tissue. Diffuse emission tomography reconstruction was used, and the location that was recovered has been confirmed by micro-computed tomography (micro-CT) images. With recent advances, diffuse tomography shows promise for in vivo clinical imaging.1, 2 In principle, algorithms developed for fluorescence imaging in tissue can be applied to Raman signals. Although the Raman effect is weaker than fluorescence, the scattered signal is detectable, and thus tomography is achievable. Here we demonstrate the first diffuse tomography reconstructions based on Raman scatter. Raman mapping and imaging are well-established techniques for examining material surfaces.3 Subsurface mapping of simple planar objects was reported recently4, 5 using fiber optic probes with spatially separated injection and collection fibers.6 Noninvasive measurements of bone Raman spectra were demonstrated at depths of5mm role= presentation \u3e5mm below the skin.5 Bone is promising for Raman tomography because the spectra are rich in compositional information,7 which reflects bone maturity and health. Spectroscopically measured bone composition changes have been correlated with aging8 and susceptibility to osteoporotic fracture.9 The Raman spectrum of bone mineral is easily distinguished from the spectra of proteins and other organic tissue constituents, facilitating recovery of even weak signals by multivariate techniques. Assessments of bone quantity and quality are essential to detect and monitor fracture risk and fracture healing with disease or injury. Common sites for fracture with osteoporosis are the spine, proximal femur, and distal radius. Stress fractures are most frequently seen in the weight-bearing sites of the tibia and metatarsals. Fracture risk depends on bone geometry, architecture, and material properties, as well as the nature of applied load (magnitude, rate, and direction). As a result, noninvasive imaging and nondestructive analysis methods have been developed to assess many of these bone attributes that are increasingly important to clinical practice and basic research in orthopedics.10 Current clinical in vivo methods include dual-energy x-ray absorptiometry (DXA), quantitative computed tomography (QCT), magnetic resonance imaging (MRI), ultrasound, and most recently, high-resolution peripheral QCT. Ex vivo analyses of bone specimens from patients or animals have also utilized these and other techniques. In this study, we couple micro-computed tomography (micro-CT) and diffuse optical tomography with Raman spectroscopy to recover spatial and composition information from bone tissue ex vivo. We demonstrate the first reconstruction-based recovery of Raman signals through thick tissues to yield molecular information about subsurface bone tissue. Reconstructions from transcutaneous Raman measurements are challenging, because layers of skin, muscle, fat, and connective tissue lie over the bone sites of interest. These layers have different optical properties and thus variably scatter and polarize the injected light. We chose a canine model because of specimen availability and a bone size similar to human bone. We selected the tibia, a site that is clinically important and has relatively few overlying soft tissues. Measurements were made on the medial surface, where the only additional optical barrier is the crural extensor retinaculum ligament. The canine hind limb was harvested from an animal euthanized in an approved (UCUCA) University of Michigan study. The section of the limb distal to the knee was excised and scanned using in vivo micro-CT (eXplore Locus RS, GE Healthcare, Ontario, Canada). The tibia was scanned at80kV role= presentation \u3e80kV and 450μA role= presentation \u3e450μA with an exposure time of 100ms role= presentation \u3e100ms using a 360-deg scan technique. The image was reconstructed at a 93-μm role= presentation \u3e93-μm voxel resolution [Fig. 1a ]
    corecore